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The use of bone-graft substitutes in large bone defects: Any specific needs?
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A B S T R A C T

Introduction: The gold standard for restoring bone defects is still considered to be autologous bone

grafting. However, clinical benefits are not guaranteed and donor-site complications and morbidity is

not infrequent. Research is on-going for the development of alternative bone substitutes of both

biological and synthetic origin. The purpose of this study was to evaluate the type of materials used and

their efficacy for the treatment of large bone defects in traumatology and orthopaedic surgery.

Materials and method: A literature review was carried out of Embase and PubMed databases. Inclusion

criteria were articles in English language focusing on the use of bone substitutes in trauma and

orthopaedic surgery for the treatment of bone defects and included details on the structural, biological or

biomechanical properties of the pure product. Furthermore, based on two clinical challenges, fracture

non-union and impaction grafting we elaborated on the use of polytherapy for large bone defects as

guided by the diamond concept.

Results: All the products indicated in this manuscript possess osteoconductive activities but have

different resorption times and biomechanical properties. Bone graft substitute materials are used for a

wide range of clinical applications even when the level of clinical evidence is low. The size and location of

the defect and the local biological and mechanical environment as well as the biomechanical

characteristics of the material determine the type of device that can be implanted in a bone defect.

Conclusion: Proper assessment of the biological and mechanical environment and accurate patient

selection are necessary to judge the extent of therapy the injury warrants. A sound understanding of

various aspects of biomaterial properties and their relation and influence towards bone healing is of

utmost importance. We suggest the application of polytherapy for the treatment of large bone defects

and advocate the use of the diamond concept as a guideline.

� 2011 Elsevier Ltd. All rights reserved.
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Introduction

The healing of fractures is a physiological process that results in
bone union.1 Studies have estimated that 5–10% of all fractures are
associated with impaired healing, resulting in delayed union or non-
union.2–4 Bone defects are very challenging in orthopaedic practice;
they can result from a high-energy traumatic event, from large bone
resection for different pathologies such as tumour or infection, or
from the treatment of complex non-unions (en-bloc resection). They
can be considered critical in relation to the skeletal segment
involved and the length of bone loss: 3 cm for the forearm, 5 cm in
the femur and tibia, 6 cm in the humerus. Apart from the usual
known techniques – such as distraction osteogenesis, autograft or
arthrodesis – tissue engineering and regenerative medicine using
biotechnologies can be very useful.5
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Significant bone defects or post-traumatic complications may
require bone grafting in order to fill the defect. Bone grafts fill
spaces and provide support, and may enhance the biological repair
of the defect. Bone grafting is a common surgical procedure; it has
been estimated that 2.2 million grafting procedures are performed
worldwide each year.6,7

The biological properties of bone grafts and bone graft substitutes
are often described by the terms osteoinductivity, osteoconductivity
and osteogenicity. Osteoinductivity is the ability of a graft to actively
stimulate or promote bone formation.8 Osteoconductivity is a
property of the scaffold that allows the colonisation and ingrowth of
new bone cells and sprouting capillaries due to its three-dimensional
structure. Osteoconduction is mainly determined by the porosity
properties of the scaffold and also in a lesser extent by its chemical
and physical properties of the substrate that promote adhesion and
cell growth.9,42 The osteoconductive calcium phosphate bone graft
substitutes allow attachment, proliferation, migration, and pheno-
typic expression of bone cells leading to formation of new bone in
direct apposition to the biomaterial. Osteoconductivity is by
definition a passive process.42 Osteogenicity is related to the
presence of bone-forming cells within the bone graft.10
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The mechanical properties of bone grafts and bone graft
substitutes and their resistance to compression and torsion are
influenced by their shape and size (massive, cortical or cancellous
block, bone chips), the harvesting, processing and storage methods
utilised, and the type of fixation used. The mechanical properties of
bone graft substitutes are further dependent on their composition,
shape, porosity properties and crystallinity.42

The optimal bone substitute should be osteoconductive,
osteoinductive, osteogenetic, without risk of transferring infec-
tious diseases, readily available, manageable, biocompatible,
and bioresorbable. Moreover, it should induce minimal or no
fibrotic reaction, undergo remodelling, and support new bone
formation. From a mechanical point of view bone substitutes
should have similar strengths to that of the bone being replaced.
Finally, it should be cost effective and available in the quantity
required.15

Medical scientists started to focus their research on enhance-
ment of bone healing using other active biological substances as
alternatives to autologous bone grafting (ABG) due to its limited
availability, and to other problems in managing ABG such as the
prolonged surgical time and the additional donor-site morbidi-
ty.13,14,51–53 Technological evolution and better understanding of
bone-healing biology resulted in the development of numerous
alternative bone graft substitutes with various effects on bone
healing.41 Numerous products containing hydroxyapatite, trical-
cium phosphate, dicalcium phosphate, calcium sulphate or
bioactive glasses are currently available for use in trauma and
orthopaedic surgery.15

The diamond concept11,12 suggests that in order to achieve
uneventful fracture healing four parameters (osteogenic cells,
osteoconductive scaffold, growth factor and a stable mechanical
environment) are mandatory. Later vascularity at the defect site was
added as an important factor in the fracture healing process.12

Several studies have applied some or all the principles of the
diamond concept in the clinical setting with satisfactory results.16–23

However, an evidence-based guideline to assist surgeons in
selecting the best product for specific clinical indications is not yet
available. The purpose of this study therefore was to provide an
overview of the use and efficacy of bone graft materials/substitutes
for the treatment of such clinical challenges as bone defects, and
non-union treatment.

Materials and methods

Bone graft and bone graft substitute materials were selected on
the basis of the following criteria: (1) indicated for use in trauma
and orthopaedic surgery; (2) available on the market at the time of
this study; (3) they are biological bone substitutes such as
demineralised bone matrix (DBM), allograft, or synthetic sub-
stitutes such as calcium phosphate, calcium sulphate or bioactive
glass. Products were excluded if they were indicated for use only in
craniomaxillofacial surgery.

Using the PubMed and Embase search engine, a search of the
published series on bone substitutes was performed on 1st
November 2010. The following keywords were used: ‘‘bone
substitutes’’ OR ‘‘review’’ OR ‘‘bone defect’’ AND ‘‘biomaterials’’
OR ‘‘scaffolds’’ OR ‘‘calcium phosphate/sulphate’’ OR ‘‘growth
factors’’ OR ‘‘mesenchymal stem cells’’ OR ‘‘autologous bone graft’’
OR ‘‘BMPs’’.

Brand names and composition of all products were used as
search terms in the available online databases (Embase, PubMed).
Titles and abstracts were screened and only papers that reported
on structural, biological or biomechanical properties or on clinical
indications in trauma and orthopaedic surgery were considered
eligible. Exclusion criteria were: case reports or reports referring to
children (age <16 years), editorials, and articles other than the
English language. All references in the selected manuscripts were
reviewed in order to ensure that no papers had been missed with
the chosen search strategy. Data from the accumulated manu-
scripts were collected, mainly those addressing the issues of this
review. Furthermore, based on two clinical challenges, non-union
treatment and bone impaction grafting treatment, we elaborated
on the use of polytherapy for large bone defects as guided by the
diamond concept.

Results

The initial literature search resulted in more than 250 papers.
After screening of all titles and abstracts and exclusion of
duplicates a total of 200 eligible manuscripts were reviewed.
After reading the full text of all eligible manuscripts, some papers
were excluded and others were added based upon the reference
list. Based on the manuscripts that fulfilled all the inclusion criteria
a short overview of bone substitute materials and their key
characteristics and indication areas is presented below.

Biological substitutes

In this category autograft, allograft and demineralised bone
matrix have been included

Autograft

The use of ABG is still considered the gold standard for
augmentation of bone healing. Theoretically, it possesses all three
desirable properties of graft materials: osteogenicity, osteoinduc-
tivity and osteoconductivity. However, failure rates have been
reported to be as high as 50%, and this can be explained by different
types of harvesting, handling, the implantation method used, and
differences between patient conditions and bone vitality.50 The
reported healing rates where ABG has been used as a biological
stimulant for the treatment of large bone defects shows a range of
60–100%.23,50

Nevertheless autologous bone grafting has some significant
disadvantages. Firstly, the harvesting process has been associated
with perioperative and post-operative complications and morbid-
ity. Secondly, a prolonged surgical and anaesthesiological time can
cause a proportionally increased risk of infection.51,52 Finally, the
cost of harvesting can be equivalent to the cost of commercial
available bone graft substitute products.14,51–53

Allograft

Allograft is a good alternative to ABG; avoiding donor-site
morbidity and pain. It is relatively easy to obtain and manage. The
major risk and disadvantage in using allografts is viral disease
transmission and bacterial infection, especially when fresh
implantations are performed. Recognised as ‘‘non-self’’, the
allograft is attacked by the immune system. Allografts primarily
showed osteoconductive power and less frequently osteoinductive
properties due to the variable presence of growth factors. Allograft
offers optimal osteoconductive and biomechanical characteristics
due to its three-dimensional structure similar to that of human
bone and the presence of collagen type 1 with all its above-cited
biological properties. This characteristic depends on the type of
allograft and the processing methods used to prepare, sterilise, and
store it. It is important to realise that allograft quality is donor
dependent and therefore will not always result in the same clinical
outcome. Allografts, once implanted, follow the kinetics of
physiological bone-tissue remodelling, the process achieving
complete remodelling and replacement of the graft by newly
formed bone. Incorporation of allograft bone begins with passive
osteoconduction, and it differs according to the type of graft used;
cortical grafts are usually incorporated by creeping substitution
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through the process of intramembranous bone formation, whilst
cancellous grafts are incorporated by enchondral bone formation
along the osteoconductive framework. Allografts can be pro-
cessed as a powder, granules, cancellous or cortical chips,
wedges, strips or blocks. Potential applications in the trauma
setting include reconstruction of large bone defects, augmenta-
tion in fracture repairing, and treatment of non-unions. They can
be used as fillers (in chips) or as a mechanical support (wedge,
block or strips).

Allograft has been used quite frequently with the bone
impaction grafting technique. The bone impaction grafting
technique offers a biological solution for coping with bone stock
loss during revision THA and was first described by Slooff and
colleagues for the acetabular side.72 The bone impaction grafting
technique has three main characteristics: first of all, the closure of
all segmental bone defects with metal meshes (secured with bone
screws) in order to contain these defects. Secondly, restoration of
bone stock by filling the bone defect with vigorously impacted
morselized cancellous bone grafts (MCB) using various shaped
impactors and a metal hammer. Next, bone cement is introduced in
the reconstruction and pressurised to force it into the bone graft
layer. Finally, a new acetabular cup is implanted in the
reconstruction to complete the technique. In general this
technique has led to excellent short- and long-term clinical
results.73–76

Due to the expected shortage of bone grafts for surgical
procedures in the future and the risk of virus transfer when using
allograft bone, there has been an increased interest in bone
substitutes.6 From a biological point of view ceramic calcium
phosphates, such as tri-calcium phosphate (TCP) and hydroxyapa-
tite (HA) are widely considered as promising bone graft
substitutes.

Mixtures of MCB and TCP-HA granules combined with the bone
impaction grafting technique have been mechanically studied in
both acetabular and femoral in vitro models. In general, the
implant stability on both the acetabular77,78 and femoral79,80 side
improved relative to reconstructions with pure allograft bone. In
an animal model swift osteointegration and absence of third body
wear was observed.81 Clinically good short-term results of bone
impaction grafting with ceramic bone graft substitute materials
were obtained.67,68 Non-surprisingly these results were obtained
with following the four domains of the diamond concept and
providing vascularity by means of burr holes in the acetabular
socket.

Demineralised bone matrix

DBM is produced by specific demineralisation (using acid
extraction) of allograft, and it contains type-1 collagen, non-
collagenous proteins, and a small amount of osteoinductive growth
factors such as BMPs, transforming growth factor beta (TGF-b 1-2-
3), and insulin-like growth factor (IGF).24 All of these factors, when
implanted, are able to work in combination in order to create a
potential osteogenic response.60–64 A large number of deminer-
alised bone matrix formulations are available on the market,
differing in refinements and manufacturing processes. These are
available as granules, strips, putty, gel and freeze-dried powder.
They can be used alone or in combination with other materials
such as allogeneic bone chips and calcium sulphate granules. In
animal studies they have been shown to have osteoinductive
effects, but there are no level-I studies in humans. Moreover, in
large bone defects and non-unions there is a lack of clinical and
scientific evidence. However, DBM has demonstrated a lower
osteoinductive capacity compared to ABG25 and has shown a high
and questionable variability of the concentration of BMP-2 and
BMP-7 in some products,26 depending on the manufacturer and
manufacturing process.27
Synthetic bone graft substitute materials

Synthetic bone graft substitute materials are mineral structures
similar to the mineral content of human bone including calcium
phosphate or calcium phosphate ceramics such as hydroxyapatite
(HA), coralline hydroxyapatite, tricalcium phosphate (TCP) and
biphasic calcium phosphate (BCP = HA + TCP). They are made from
inorganic, non-metallic materials with a crystalline structure,
usually processed at a high temperature (sintering). Most synthetic
bone substitutes are hard, porous yet brittle. They have only
osteoconductive properties.42

Calcium phosphate

Calcium phosphate such as TCP and HA were introduced for
clinical use in the 1980s.28 Nowadays, different calcium phosphate
grafts are available on the market. They can be separated into HA,
TCP and biphasic materials on the basis of their chemical
composition.

Structural properties are related to the method of production;
they allow us to distinguish between ceramics and cements. A
ceramic is defined as an inorganic phase solid prepared by thermal
treatment and subsequent cooling. For calcium phosphate
ceramics thermal treatment is called sintering. The sintering
process removes volatile chemical constituents and increases the
size of crystallisation, thus resulting in a porous and solid material.
Cements consist of a mixture of calcium phosphates which can be
applied as a paste that usually gets hard at the application site due
to precipitation or exothermic reactions. Cements, unlike ceramics,
have a solid structure characterised by limited porosity and pore
size. They have been shown to induce a biological response similar
to that of bone.29 In general, calcium phosphates are considered to
be osteoconductive.

The osteoconductive properties of these materials depend on
the pore size, porosity and degradation potential of the bone
substitute. The optimal pore dimension for ingrowth of new bone
is between 150 and 500 mm in size (macroporosity).43,44 Based
upon their structures, HA and TCP ceramics offer a suitably
macroporous structure to facilitate new bone ingrowth. Micropo-
rosity (e.g. pores <5 mm) is considered important for the
bioresorbable properties of the material and the diffusion of
nutrients.45

Bioresorption by dissolution or cell mediated by osteoclast,
macrophages or giant cells of HA seems to be related to its
manufacturing process (i.e. crystallinity, sintering temperature),
surface area and porosity properties (% porosity, interconnected or
surface porosity) whereas the calcium phosphate cement seems to
only to be mainly degraded by osteoclasts.30–34 Calcium phos-
phates generally provide limited biomechanical support due to
their low tensile resistance. TCPs are less brittle than HA; however,
during degradation (TCP faster degradation than HA) there is a
subsequent loss of mechanical strength. TCP and calcium
phosphate cement composites are degraded by osteoclasts within
approximately 1 year (TCP) or 2–5 years (HA).29

Clinical indications are related to specific structural, biological
and biomechanical properties of the graft. TCP ceramics are useful
to fill small bone defects after bone tumour resection or after bone
loss in fresh fracture in e.g. tibia, humerus, calcaneus, radius and
vertebral surgery, but they are not indicated in large bone defects.

HA is a common material and is available in non-absorbable or
absorbable solid forms and as granules and it has been used
successfully in larger bone defects.67,68 Limitations of these
materials are that ceramics are available only in the form of
powder, cements or porous implants, and they have some
disadvantages such as difficulty in implanting, usually a long time
required for complete integration and replacement by newly
formed bone, and the inability to fill irregular gaps. They are
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therefore not very useful when used alone in the treatment of
atrophic non-unions of long bones due to lack of growth factors.35

However, they have proven their worthiness in the restoration of
large bone defects with the bone impaction grafting technique
revision THA.67,68

Calcium sulphate

Calcium sulphate has been used as bone void filler since the late
1980s. It is available in a dry powder produced by heating gypsum;
it can be hardened by crystallisation in an exothermic reaction
following the addition of water. It has resorbable osteoconductive
properties due to the three-dimensional structural framework
which is useful for angiogenesis and osteogenesis; however, it
lacks osteogenic and osteoinductive properties. Calcium sulphate
is considered to be biocompatible and is fully dissolved within 6–
12 weeks.36 There are no relevant data on structural or
biomechanical properties of calcium sulphate grafts in the
literature. Calcium sulphate grafts are mainly used to replace
bone loss after tumour resection surgery or to graft bone defects of
the distal tibia, patella, calcaneus, ileum, femur and humerus; they
can also be used to treat both proximal and distal tibia
fractures.37,38 However, calcium sulphate may not provide
sufficient biomechanical support and osteoconductive efficacy in
large bone defects for calcium sulphates are generally dissolved
within 6–12 weeks.46

Bioactive glasses

These can be defined as hard, solid materials consisting of
sodium oxide, calcium oxide, silicon dioxide and phosphorous in
various proportions, available as soluble and non-resorbable
grafts.39 Bioactive glasses can be manufactured as microspheres,
fibres and porous implants.

They display mainly osteoconductive properties and have few
osteoinductive properties.10 Reported bioactivity depends upon
the presence of silicon oxide. A silicate-rich layer is produced when
it comes into contact with human fluids such as blood, creating a
bond between bone and glass upon which a new layer of HA is
deposited. There are no relevant data on structural or biomechani-
cal properties of bioactive glasses in the literature, but they show a
superior mechanical strength compared with calcium phosphate
products as a result of strong graft–bone bonding.10

The resorption of bioactive glass is variable and depends upon
the relative amounts of the different constituents. Clinically,
bioactive glasses have been applied for craniofacial reconstructive
surgery and for dental and trauma or orthopaedic surgery.69–71

Case 1: Bone impaction grafting for revision Total Hip Arthroplas-

ty. The bone impaction grafting technique offers a biological
solution for coping with bone stock loss during revision THA and
was first described by Slooff and colleagues for the acetabular
side.72 The bone impaction grafting technique has three main
characteristics: first of all, the closure of all segmental bone defects
with metal meshes (secured with bone screws) in order to contain
these defects. Secondly, restoration of bone stock by filling the
bone defect with vigorously impacted morselized cancellous bone
grafts (MCB) using various shaped impactors and a metal hammer.
Next, bone cement is introduced in the reconstruction and
pressurised to force it into the bone graft layer. Finally, a new
acetabular cup is implanted in the reconstruction to complete the
technique. In general this technique has led to excellent short- and
long-term clinical results.73–76

Due to the expected shortage of bone grafts for surgical
procedures in the future and the risk of virus transfer when using
allograft bone, there has been an increased interest in bone
substitutes.6 From a biological point of view ceramic calcium
phosphates, such as tri-calcium phosphate (TCP) and hydroxyapatite
(HA) are widely considered as promising bone graft substitutes.
Mixtures of MCB and TCP-HA granules combined with the bone
impaction grafting technique have been mechanically studied in
both acetabular and femoral in vitro models. In general, the implant
stability on both the acetabular77,78 and femoral79,80 side improved
relative to reconstructions with pure allograft bone. In an animal
model swift osteointegration and absence of third body wear was
observed.81 Clinically good short-term results of bone impaction
grafting with ceramic bone graft substitute materials were
obtained.67,68 Non-surprisingly these results were obtained with
following the four domains of the diamond concept and providing
vascularity by means of burr holes in the acetabular socket.

Discussion

Bone regeneration in large bone defects resulting from trauma
or other diseases remains an important and unsolved problem in
trauma and orthopaedic practice. Treatment strategies depend
upon the size, the segment involved and the location (epiphyseal,
meta-epiphyseal, diaphyseal) of the defect.

The size and location of the defect and the local biological (i.e.
vascularisation and presence of stem cells) and mechanical (load)
environment as well as the type of device implanted are the main
factors relevant to the requirements of an optimal bone
substitute.

Our review focuses on the use of bone substitutes in large
defects. The past decade has seen an increasing number of bone
substitute materials becoming available for use in trauma and
orthopaedic surgery. The structural, biological and biomechani-
cal properties of bone grafts are very important for their clinical
success. All the products we have analysed (DBM, allograft,
synthetic bone graft substitutes and bioactive glasses)
possess osteoconductive properties and variable (high to none)
osteoinductive properties.

Besides biological properties, bone graft substitutes should
offer optimal biomechanical strength, especially in those segments
– such as femur and tibia – that are under high weight-bearing
loads, or forearm and humerus that are subjected to high torsion
forces. The biomechanical strength is a result of a complex
interplay between the bone and the bone graft substitute material.
In an ideal situation a bone substitute material may offer the same
biomechanical strength as the bone being replaced.

However, the biomechanical behaviour of a bone substitute
implanted is a result of in vivo interactions (integration, incorpo-
ration and bioresorption). Human cortical bone has a compressive
strength of 130–290 MPa and a tensile strength of 90–190 MPa,
whereas the compressive strength of cancellous bone is in the range
2–38 MPa.47 None of the included bone substitutes offers a
biomechanical strength similar to that of cortical bone. Calcium
phosphate grafts possess compressive strengths comparable to
those of cancellous bone, but have limited resistance to tensile and
shear forces. Calcium sulphates provide only minimal structural
support. Bioactive glass has a compressive strength of 91–197 MPa
but its tensile strength does not reach values comparable to that of
cortical bone.48 Thus from a mechanical point of view these bone
substitutes would appear to be unsuitable for grafting of significant
cortical bone defects without additional support.

Calcium phosphate grafts may be used to fill metaphyseal bone
defects at various locations of the lower limbs (calcaneus, proximal
tibia, distal tibia, and proximal femur) where they reach at least a
level II of evidence. In the lower extremity, calcium sulphate is
rarely used. Calcium phosphate grafts are most frequently used in
the upper extremity, as supported by level-II evidence.

In our study we have analysed only one aspect of the diamond/
pentagon concept; what should be the characteristics of an
osteoconductive scaffold. This may provide an adequate support



Fig. 1. Pre-operative X-ray image. Male, 34 years old, NUSS = 68. First trauma: motorcycle accident, left radial fracture. Current situation: atrophic non-union with critical

bone defect.
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and framework to create new bone formation by the invasion of
nearby bone-forming cells, but it may be not enough in real critical
bone defects and in those patients characterised by a poor
biological environment. In these cases all the elements of the
Fig. 2. Intra-operative images. (a) Treatment performed: radical resection of fibrous tissu

using a locking compression plate (LCP) + allograft implant; (c) implantation of growth

closing of the ‘‘biological chamber’’ superiorly with a haemostatic agent (surgical).
diamond/pentagon concept must be provided (polytherapy) in
order to achieve bone regeneration (Figs. 1–3).12,49

Also the local and general risk factors that may impair fracture
healing must be studied, as should other patient characteristics
e (3 cm) and creation of the ‘‘biological chamber’’; (b) mechanical stability obtained

 factor and a scaffold with concentrated bone marrow aspirate (polytherapy); (d)



Fig. 3. (a) Post-op X-ray image; (b) CT images at 9 months.
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that include bone quality, soft tissue status and the presence of
comorbidities (such as diabetes, osteoporosis, vasculopathy and
drugs).2 For this reason we have developed a classification system
called NUSS (non-union scoring system) that is an innovative
approach to the problem, as it interprets the multifactor reasons
for failure.40

Several studies over the years have shown that the implantation
of one single bone graft material has been associated with different
success rates ranging between 50% and 90%17,19–21,23,54–58: for this
reason the idea of ‘‘polytherapy’’ is arising in the orthopaedic field
and consists in the utilisation and simultaneous implantation of all
three fundamental components of the diamond concept MSCs,
growth factors and scaffolds.12,59

Polytherapy therefore may be a logical option, especially in
individuals of advanced age with associated co-morbidities and a
limited capacity for tissue regeneration. In such cases, it could
potentially accelerate fracture healing, facilitate early mobilisation
of patients, and reduced morbidity, health-care costs and
complications associated with ongoing cases of impaired fracture
healing.

Conclusions

Bone substitutes have different structures and chemical
compositions. Patient conditions, the skeletal segment involved,
and the size and location of the bone defect determine the choice of
bone-grafting material and shape. There is a definite link between
the type of osteosynthesis needed and the topography of the
defect. Different situations require different solutions. So we can
further distinguish between scaffolds that meet the biological
requirements from scaffolds that possess mechanical properties to
correct the spectrum of stability necessary for the healing of the
bone defect.
The structural, biological and biomechanical properties of the
graft itself are very important. It is very difficult to affirm whether
there is any special need in a large bone defect. What we can say is
that, based on our experience, the application of a scaffold alone is
not enough for restoring large bone loss, particularly in complex
non-unions in difficult patients characterised by a high NUSS score.

In addition, the importance of vascularity in bone regeneration
should not be forgotten.65,66

In order to improve decision making regarding which bone
substitute has to be used to treat large defects properly, more
standardised studies are necessary to better understand the use of
the grafts discussed above. Additional level-I scientific evidence is
required in order to adequately state the clinical efficacy of those
products.

The data present in the literature show that materials with
similar chemical and physical compositions do not necessarily
possess the same structural, biological and biomechanical
properties or follow the same resorption pathway or even result
in the same healing characteristics.

Therefore, proper assessment of the biological and mechanical
environment and accurate patient selection are necessary to judge
the extent of therapy the injury warrants in the clinical setting. A
sound understanding of various aspects of biomaterial properties
and their relation and influence towards bone healing is of utmost
importance.

In conclusion we suggest the application of polytherapy for the
treatment of large bone defects and advocate the use of the
diamond concept as a guideline.
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